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Multidimensional and memory effects on diffusion of a particle
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The diffusion of an overdamped Brownian particle in the two-dimensi@2) channel bounded periodi-
cally by a parabola is studied, where the particle is subject to an additive white or colored noise. The diffusion
rate constanD* of the particle is evaluated by the quasi-2D approximation and the effective potential ap-
proach, and the theoretical result is compared with the Langevin simulation. The properties of the diffusion rate
constant are stressed for weak and strong noise cases. It is shown that, in an entropy channel, th®%alue of
in units of Q decreases with increasing intensity of the colored noise. In the presence of energetic barriers, a
nonmonotonic behavior of the reduced diffusion rate condbdr® ! as a function of the noise intensity is

shown.
DOI: 10.1103/PhysRevE.63.061112 PACS nun)er05.40—-a, 05.60--k, 66.10.Cb
I. INTRODUCTION AND MODEL there has been intense activity in the analysis of stochasti-

cally driven ratchets. These ratchets are spatially periodic
The study of dynamical systems perturbed by varioussystems where a spatial asymmetry in the potential imposes a
noise sources is of wide-ranging significance to the detailedirectionality, and the memory effects may be from a tem-
understanding of transport processes and the characterizatigararily correlated stochastic forcé.e., colored noisg
of nonlinear phenomena. In this context, the diffusion mo-thereby rectifying microscopic fluctuations to generate a di-
tion of a partic|e ina periodic potentia| is especia”y a |0ng-reCted particle drift. The applications of these concepts have
standing theoretical problem of considerable interest. Rebeen proposed as a possible explanation for the long-range
stricting to the one-dimension&lD) cases, one deals with Cellular transport of the motor proteif$4]. So in a general
an overdamped Brownian particle that is driven by a thermaway, the noise in the problem studied is nonwhite.
white noise and moves in a sinuous potentid| where the In this paper, we consider the diffusion process of an
particle must climb over a periodic array of potential barri- Overdamped Brownian particle subjected to a white or col-
ers, its diffusion rate constam*, measured by long time ored noise, which moves in a two-dimensional coupled peri-
increase of the mean squared displacement, can be exacfic potentialU(x,y) that is periodic in the direction and
expressed as an analytical formiil§ and is exponentially ~parabolic in they direction. The model is described by the
smaller than the free Brownian diffusid2—4]. The most following 2D Langevin equation written in a dimensionless
intensively studied phenomenon of noisy dynamics is thatorm
the coherent response of the system to an input signal can be
enhanced by a noise, tending to be the maximal output at an . AU (x,y)
optimal noise strengtfb]. An enhancement of the diffusion X() == TV2Qm(v),
coefficient has been recently observed in 1D rocked periodic
potentials[6—8], where the particle is subject to both a ther- AU(xX.y)
mal white noise and a time-periodic bias with an amplitude U(t)= — 24 +\20 1
; : \ y(t) Qny(t), (1)
large with respect to the potential barriers. ady
In the absence of energy barriers, the white-noise-induced
diffusion in a 2D periodic channel was considered in Ref.where (7,(t))=(7,(t))=0, (7(t) 7,(t"))= Sck(|t—t']),
[9], where the particle should wander in before it is able toQ andk(t) are the intensity and the correlation function of
change its position, thus it takes long time to move in thethe noise, respectively. The potential is taken to be a coupled
unbounded direction. It has been demonstrated that the valygeriodic channel,
of D*Q 1! is independent of the noise intensity, and is de-
termined by geometric structure of the potential. This 2D 1
result is different from the 1D result of Refgl0] and[11], U(x,y)=U(x)+ EC(X)yZ, 2
the latter shows a monotonic behavior of the diffusion rate
constant with the noise strength and reaches asymptotically
saturation in the limit ofQ—c. Clearly, when a particle Wit
diffuses on a smooth surface, it is often the case that at least
two degrees of freedom are strongly coupled. However, a Ui(X)=—Ugsin(x), C(X)=Co[1l—\sin(x+¢)],
systematic and theoretical understanding of the multidimen- (€)
sional effects is still not available.
Moreover, for more realistic physical systems, the considand 0<\ <1, the periodic length of botbl ;(x) andC(x) is
eration of the noise source with a finite correlation time hasqual to 2r. More nontrivially, in our potential the channel
become a subject of current stufi$2,13. Very recently width is changed periodically.
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For very large time the particle is distributed over many . o (27
wells and its diffusion motion along thg direction is D1(y)=Q(2m) UO exd —U(x,y)/QJdx
bounded, thus the diffusion rate constant of the particle is

evaluated by 2m -1

xj exdU(x,y)/Qldx; . (5)

0
D= Eliml<[x(t)—x(0)]z>. (4) The mean diffusion rate :)f the pa_rticle equals_ the integration
2, .t of y from —o to o for DY (y) within one spatial period,
% 2 .

For the free Brownian motion, one can find tiag .= Q is f,xdy 0 dxD1 (¥)Psi(x.y)
valid even in the colored noise cases as long as the gradient D*= . (6)

e 2

of the potential is position independent. f dyf dXPs(X,y)

The coupled channel model may have a wide application o 0
[15-18, and one can represent the influence of the irrelevant o o
degrees of freedom on the relevant part of the system. Th¥here the equilibrium distributioPs(x,y) reads[18,24—
present 2D problem also differs from the diffusion in the 26],
egg-carton potentidll9] and the multiple hops of activated
surface diffusior{20]. Here the dependence of the diffusion Psi(x,y)=exd —U(x,y)/Q]. @
rate of a particle on the noise intensity will be nonmonotonic e - .
varying. Notice that the nonmonotonic phenomenon pro_Hence, the diffusion rate constant is finally predicted by
posed in this work could be very useful in understanding the

nature of completely symmetric periodic structures, as well f‘” dy[ wadxquU(X,y)/Q] 1
as for applications such as noisy Josephson junction, mobil- —o 0

ity and diffusion of atoms in crystals, and supersonic con- - % 27 ' ®
ductivity. f_mdyfo dxexg —U(x,y)/Q]

If the potential shape is chosen to be the form of Egs.
and(3), we can rewrite Eq(8) as

For a 2D coupled periodic system, an exact expression for
the overdamped diffusion is not available. However, it is * 1~ 2y -1
possible to generalize the method leading to exact 1D results ledyexp( 2Coy o (2)
and to obtain an analytical 2D approximation. In a recent D*=Q
series of paperg§21-23, the variational transition state f
theory for multidimensional activated rate processes have
been developed intensively by Berezhovskii and co-workers, .
which will be the starting point of the present work. Indeed, VIt
the diffusion rate constant of a particle is connected to its

mobility and the latter is determined by(F)zF*1<>'<> z=2(y)=
=2mJ/F, in which F is an introduced constant force along
the x axis andJ is the probability current. In the absence of
external driving force, the diffusion rate of the particle is
thus given by the free diffusion constant multiplied by the
mobility according to the linear response the¢ty8], i.e.,
*=u(0)Q. Notice that the value of(0) is finite because
the current vanishes iF=0 for the symmetrical periodic
potential (2) with Eqg. (3). AD*QY)
Now, we consider the case of a white noise, thagkt Q —2h1,(h)153(h)=0, (11)
—t’[)=48(t—t’). In the following, we treat two different ap- aQ
proximate approaches. The first approach is called the
“quasi-2D approximation.” The variable/ is assumed to wherel, is the modified Bessel function of the first order. So
play the role of a parameter, namely, the influencg of the  that the 1D diffusion rate in units @ is an increasing func-
diffusion should be treated parametrically rather than osciltion of the noise intensity and reaches asymptotically a con-
lating. Assuming that at fixegl the diffusion of the particle  stant lim,_,., D* = Q. Further, in the absence of energy bar-
along thex direction has been considered as being one diriers, the diffusion rate times the inverse of the noise
mensional, we carry out ydependent diffusion rat®7 , intensity is reduced to

Il. MULTIDIMENSIONAL EFFECTS

. , 9
mdy exp(—3Coy?)1o(2)

2 1/2
+hCohy?cog )

1
h2+ (ECO)\yZ
(10

whereh=U,/Q andl, is the modified Bessel function of
zeroth order.
For the decoupling casea £0), D* =QI52(h), leading
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exp( — 3Coy?)dyly (3Cohy?)
D*Q l=—0 . (12
fﬁ exp(—3Coy?)dylo(3Coly?)

which is aQ-independent constant.

The second approximation is the “effective potential ap- 2'/2
proach” (EPA). In the EPA, the 2D problem is simplified to
the 1D problem with a reduced potentisl(x) through
eliminating the variabley [18,19,2]. We integrate ovey
from —o to « in the equilibrium distribution7), thus the
reduced potential is given by

—_ - _ 0. 60 _ : . ;
Vi) Qln Jiwdyexp{ U(X’y)/Q]] 0.0 0.1 0.2 03 04 05 06 07 08 09 L0
C(X) A

Ui(x)+ 5 Ql 13 _ . ,
Q FIG. 1. Dependence dd*Q ! on the coupling\ at fixed Q

. . . =2.0, 7.=0, and¢= =. The black dots correspond to the Langevin
The diffusion rate constant can be written as simulation, the dash-dotted line to the EPA and the solid line to the
quasi-2D approximation.

27
* — 2
D*=Q(2m) { jo exL ~Va(3)/Qldx It is straightforward to simulate numerically a set of
o 1 Langevin equations in terms of the predictor-corrector algo-
Xf exqvl(x)/Q]dx] rithm [25,24. If initially the particles are ak(0)= /2 and
0 y(0)=0 they will diffuse to adjacent wells. In the following
calculations, the fixed parameters djg,=1 or 0, Co=1,
and ¢ = except in Figs. 2 and 3, as well as the time step of
integrating Langevin equationsAt=10 2, the diffusion
time takest=200, and number of the test particles N6
2m =2000.
X JO VC(x)exd Uy (x)/Qldx; . (14 Let us compare the approximations with the accurate nu-
merical result. In Fig. 1, the quasi-2D approximation corre-
sponds to the solid line, the EPA to the dash-dotted line and
the points are the numerical data. It is seen that the EPA is

) 21 B
)| . mexr{ U, (x)/Q]dx

-1

According to Schwarz’s inequality, we have

1 r2n simple and shows right behavior of the diffusion rate con-
( ( f VC(X) dx) stant for weak coupling. The quasi-2D approximation should
VC(x)/\2m predict better result for strong coupling, this is due to the
14 minima and the saddle points of the potentiBlwith Eq. (3)
< LJZWC (x) -1 (15) lying on a straight line, i.ey=0.
2mJo CY4(x) ' The value of InQ/D*) as a function ofQ ! is plotted in

Figs. 2a) and 2Zb) by means of the quasi-2D approximation
This means that the asymptotic value of the 2D diffusion rateand the EPA, and compared with the Langevin simulation at
constant is always not larger than that of the 1D one, sincéixed coupling parametex =0.8. A linear behavior is ex-
limg_,..D*=Q for the 1D case. Oppositely, wheQ is pected in the case of sma&)l. It is seen that, if the Arrhenius
much smaller than the barrier height, of the potential limit is reached, the plot should be linear with a slope that
U,(x), the saddle point method approximates the formularepresents the barrier height. For the sjm{otential the bar-

(14) as rier height is equal to 2, both Figs(&2 and 2b) show a
slope of 2. Also, it is observed that the above two kinds of
C(xo) theoretical predictions are good in agreement with the nu-
D*=Q C(Xb)exr(—Eb/Q), (16) merical result for the week noise case. In addition, in the

Arrhenius limit, the formula(16) has described correct be-
herex, andx, denote the coordinates of the minimum and havior of the reduced diffusion rate constant for different
maximum of the potential(x). It is noticed that the 2D values of¢.
diffusion rate should be larger than the 1D diffusion rate, if In the presence of energy barriers, the full 2D diffusion
C(xp)<C(xo). Namely, the presence of amy coupling can rateD*Q ! as a function ofQ for different ¢ is shown in
make the diffusion of the particle more rapid at low noiseFig. 3. As a consequence, a new nonmonotonic behavior is
intensities. observed. At intermediate noise intensities, the value of
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FIG. 2. Arrhenius plot of the reduced diffusion rate at fixed
A=0.8 andr.=0. The dots correspond to the numerical results; th
lines to the quasi-2D approximatigkqg. (9)] in (a) and the EPA in
(b) [Eq. (14)]. The solid line and circles correspond to the 1D; the
dashed line and triangles to the 2D widh= 7/4; and the dotted-

dashed line and squares to the 2D wiik 7.
D*Q ! is larger than that of the limits 0Q—0 and Q

€
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FIG. 3. The 2D reduced diffusion rate calculated by &j.as a
function of Q at fixedA=0.8, 7.=0.0, as well as for different
=m, 37, +ia, +3m and O from top to bottom.

where
® 1

Z= fxdyexp{—zcoyz lo(u), (18)
u=z(y), v=2(y), and

au_ 1 h24h )

%——@[ +hCohy“cog ¢)],

® L eineay? 19

E——@[ oAy cog¢)]. (19

The values ofdu/dQ and dv/dQ could become zero and
thus 9(D*Q1)/9Q=0 at a finite noise strengtk),,, if
cos(@)<0, i.e., s m<p<3.

IIl. THE ROLE OF COLOR OF NOISE

Now we investigate the diffusion induced by an Ornstein-

—o0. Thus the reduced diffusion rate constant has a localhlenkeck noise (OUN), i.e., k(|t—t'[)=7; exg—[t
maximum for a value of the noise intensity of the order of —t'|/7.], wherer, is the correlation time of the colored noise.
the barrier height of the energetic potential. This phenomin the case of weak colored noise, namely, the correlation
enon opens interesting perspectives, e.g., to manipulatéme 7. is much smaller than the diffusion time, the current

reaction-diffusion system.

Moreover, the condition of the nonmonotonic behavior of
D*Q ! can be observed in Fig. 3. We derive the following

expressions from Eq12),
AD*Q Y 1 (> [»
—=?Jdeydy

9Q
C0 — |1(U) Ju

_Il(U) &v], (17)

lo(u) 4Q

satisfies the Fokker-Planck equatidi],

g
Ji=—P—

O,P
aq; (9Qi[ P

(qlley)i

i 78 i 2 3
0;=D 1+TcM1Mii_§M2(R_M )i +O(7e)° |,
(20)

where the matrix eIementMi,:—aZIU(x,y)/&qiaqj, Rij

=3 (9U/da) (9°U130;99;9q), andu) andu), are the first
and second moments, respectively, of the correlation func-
tion k. The role of color of the noise is thus to make the
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effective noise intensity position dependent. However, for

any small correlation time there is a valueyo$uch that®;
is negative. So the above treatmdig. (20)] should not
apply to the present coupled periodic potentl

In order to predicate the diffusion rate constant of the

particle induced by the OUN, we integrate owerfrom
— oo to o for the equilibrium distributiodEq. (7)] if color of

the noise is not considered, and then the colored effect:p’/o 06 |
[27,28 of the noise are introduced through an effective po-

tential. Simpler to the 1D case, we solve the mobi)itf0)

of the stationary solution for the 1D effective Fokker-Planck

equation with a smalk, [1,29-31. The diffusion rate con-
stant is written as

2
D*=Q(27T)2[ fo 9~ (%, ro)exH — Pe(X)/Qldx
2 -1
xf exp[CDeff(x)/Q]dx} , (21)
0

where the effective potentiab¢; is given by

X — — 1
Deri00= | Vi 7 dX=Va(0+ 5 I VEOOT

1 C(x)
=U(x)+ EQ In m}
1 , 1 C'(x))?
and
_ ; (23
9%, 7e) = 1+ 7Vi(X)

Here,®.¢¢(x) depends on the noise intensify It is found
from Eq. (22) that the barrier height ofb.¢1(x) increases

with increasing noise intensity in the absence of energeti
potential U,=0), thus this potential can be called an en-

tropy channel. It is true thaD* (7.#0)<D*(7.=0) ac-
cording to Eqgs(21) and(22).
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FIG. 4. Dependence d* Q! on Q in the absence of energy
barriers (U;0=0) at fixedA=0.9, ¢== and for three values of
7.=0, 0.2, and 0.5 from top to bottom. The dots are the Langevin
simulations and the solid lines to the EREq. (21)].

limg .(D*Q™ 1) <(D*Q™1)|q-o. Further, it is easy to
prove thatd(D* Q~1)/9Q<0.

We stress that, for our model, the stronger the colored
noise, the higher is the entropy barrier. In the absence of
energy barriers, the diffusion rate constant as a function of
the noise intensity for different; is plotted in Fig. 4. Of
particular interest is the dependence of the reduced diffusion
rate on the intensity of the colored noise, namely, the value
of D*Q ! decreases with the increase of eitl@@ror 7.

This implies that the parametef3 and 7. have the same
influences orD* Q. However, the reduced diffusion rate
of the particle is a constant and depends only on geometric
structure of the periodic channel for the 2D white noise case

£9]. Here, the existence of a vanishing asymptotic value of

D*Q ! indicates the occurrence of a phenomenon of the
inhibition diffusion.
The noise-intensity dependence of the full 2D reduced

In the absence of energy barriers, the reduced diffusiofliffusion coefficient shown in Fig. 5 is nonmonotonic. Be-

rate constant is expressed by

1
1+ Echg[c:'(x)/C(x)]']c(x)1’2

D*QlZ(ZW)Z{ fozw
Tc
><ex4 — EQ[C'(X)/C(X)]Z]dX

27 Te -1
xf C(x)1’2exp[§Q[c'(x)/C(x)]2]dx} .
0

(29)

cause all motion freezes &— 0, while asQ—x the en-
tropy channel exerts much influence on the diffusion of the
particle, in particular, in the latter case a large energy is
transferred to they degree of freedom from the diffusion
direction[20]. For the fixed coupling parametirand phase
difference ¢, the peak position changes slightly with the
noise correlation timer., and the value of the maximum
D*Q ! decreases monotonically with the increaserof
Finally, the effective potentiab.¢(x) is plotted in Fig. 6.
The nonmonotonic property of the reduced diffusion rate in
the 2D coupled periodic channel can be understood well
through the notion of &-dependence barridfy, o¢¢ for the

Note that the value oD*Q~* decreases and then vanishes1D effective potential22). Here, a minimum oy, ¢¢; cor-
when Q—, because the height of the entropy barrier isresponding to a maximal value B Q! is always a direct
proportional to the noise intensity, and the occurrence of signature for the nonmonotonic behavior of the reduced dif-

the maximum of this quantity appears in the limit of z€p

fusion coefficient with the noise intensity.
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FIG. 6. Plot of the effective potentiab.¢(x) [Eq. (22)] for
Q different noise intensities. The parameters usedrare0.5 andA

=0.8.
FIG. 5. The 2D reduced diffusion rate as a functior@odt fixed

A=0.9, = and for different7;=0, 0.2, and 0.5 from top 10 ghsence of energy barriers, the 2D reduced diffusion rate
bottom. The dots correspond to the Langevin simulations and thenstant is a decreasing function of the intensihof the
solid lines to the EPAEQ. (21)] colored noise and vanishes asymptotically in the limiQof

IV. CONCLUSIONS — o0, Moreover, the increase of either the correlation time of

o ) the colored noise or the coupling strength between the two
The motivation of the pl’esent work was twofold. FII‘St, we degrees of freedom makes this effect observable.

apply two kinds of approximate schemes to predicate the |n the presence of energy barriers, the 2D reduced diffu-
two-dimensional diffusion rate of a particle driven by a white sjon rate constant as a function of the noise intensity shows a
or colored noise, which is qualitatively in agreement with thenonmonotonic behavior.This can be well understood from an
numerical result. Second, the dependence of the reduced diljea of the effective potential. The barrier heigfy of; of
fusion rate constant on the parameters of the model is dishjs potential is a nonmonotonic function of the noise inten-
cussed, thus we can perform from energy-controlled to Xsity, and a minimal value o, .; may exist at a finite noise

ternal parameters-controlled diffusion. N intensity, which corresponds to a maximum of the reduced
Activated diffusion is restricted to low noise intensities or giffusion rate constant.

high energy potential barriers, however, unactivated diffu-
sion can occur in a periodic entropy potential. The latter
phenomenon is due to the fact that the energy is transferred
to the irrelevant degree of freedom from the diffusion path of This work was supported by the National Natural Science
the system. Different from the previous studies, here in thd-oundation of China under Grant No. 10075007.
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