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Multidimensional and memory effects on diffusion of a particle
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Department of Physics, Beijing Normal University, Beijing 100875, China
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The diffusion of an overdamped Brownian particle in the two-dimensional~2D! channel bounded periodi-
cally by a parabola is studied, where the particle is subject to an additive white or colored noise. The diffusion
rate constantD* of the particle is evaluated by the quasi-2D approximation and the effective potential ap-
proach, and the theoretical result is compared with the Langevin simulation. The properties of the diffusion rate
constant are stressed for weak and strong noise cases. It is shown that, in an entropy channel, the value ofD*
in units of Q decreases with increasing intensity of the colored noise. In the presence of energetic barriers, a
nonmonotonic behavior of the reduced diffusion rate constantD* Q21 as a function of the noise intensity is
shown.

DOI: 10.1103/PhysRevE.63.061112 PACS number~s!: 05.40.2a, 05.60.2k, 66.10.Cb
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I. INTRODUCTION AND MODEL

The study of dynamical systems perturbed by vario
noise sources is of wide-ranging significance to the deta
understanding of transport processes and the characteriz
of nonlinear phenomena. In this context, the diffusion m
tion of a particle in a periodic potential is especially a lon
standing theoretical problem of considerable interest.
stricting to the one-dimensional~1D! cases, one deals wit
an overdamped Brownian particle that is driven by a therm
white noise and moves in a sinuous potential@1#, where the
particle must climb over a periodic array of potential bar
ers, its diffusion rate constantD* , measured by long time
increase of the mean squared displacement, can be ex
expressed as an analytical formula@1# and is exponentially
smaller than the free Brownian diffusion@2–4#. The most
intensively studied phenomenon of noisy dynamics is t
the coherent response of the system to an input signal ca
enhanced by a noise, tending to be the maximal output a
optimal noise strength@5#. An enhancement of the diffusio
coefficient has been recently observed in 1D rocked perio
potentials@6–8#, where the particle is subject to both a the
mal white noise and a time-periodic bias with an amplitu
large with respect to the potential barriers.

In the absence of energy barriers, the white-noise-indu
diffusion in a 2D periodic channel was considered in R
@9#, where the particle should wander in before it is able
change its position, thus it takes long time to move in
unbounded direction. It has been demonstrated that the v
of D* Q21 is independent of the noise intensity, and is d
termined by geometric structure of the potential. This
result is different from the 1D result of Refs.@10# and @11#,
the latter shows a monotonic behavior of the diffusion r
constant with the noise strength and reaches asymptotic
saturation in the limit ofQ→`. Clearly, when a particle
diffuses on a smooth surface, it is often the case that at l
two degrees of freedom are strongly coupled. Howeve
systematic and theoretical understanding of the multidim
sional effects is still not available.

Moreover, for more realistic physical systems, the cons
eration of the noise source with a finite correlation time h
become a subject of current study@12,13#. Very recently
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there has been intense activity in the analysis of stocha
cally driven ratchets. These ratchets are spatially perio
systems where a spatial asymmetry in the potential impos
directionality, and the memory effects may be from a te
porarily correlated stochastic force~i.e., colored noise!,
thereby rectifying microscopic fluctuations to generate a
rected particle drift. The applications of these concepts h
been proposed as a possible explanation for the long-ra
cellular transport of the motor proteins@14#. So in a general
way, the noise in the problem studied is nonwhite.

In this paper, we consider the diffusion process of
overdamped Brownian particle subjected to a white or c
ored noise, which moves in a two-dimensional coupled p
odic potentialU(x,y) that is periodic in thex direction and
parabolic in they direction. The model is described by th
following 2D Langevin equation written in a dimensionle
form

ẋ~ t !52
]U~x,y!

]x
1A2Qhx~ t !,

ẏ~ t !52
]U~x,y!

]y
1A2Qhy~ t !, ~1!

where ^hx(t)&5^hy(t)&50, ^hx(t)hy(t8)&5dxyk(ut2t8u),
Q and k(t) are the intensity and the correlation function
the noise, respectively. The potential is taken to be a coup
periodic channel,

U~x,y!5U1~x!1
1

2
C~x!y2, ~2!

with

U1~x!52U10sin~x!, C~x!5C0@12l sin~x1f!#,
~3!

and 0<l,1, the periodic length of bothU1(x) andC(x) is
equal to 2p. More nontrivially, in our potential the channe
width is changed periodically.
©2001 The American Physical Society12-1
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For very large time the particle is distributed over ma
wells and its diffusion motion along they direction is
bounded, thus the diffusion rate constant of the particle
evaluated by

D5
1

2
lim
t→`

1

t
^@x~ t !2x~0!#2&. ~4!

For the free Brownian motion, one can find thatD f ree5Q is
valid even in the colored noise cases as long as the grad
of the potential is position independent.

The coupled channel model may have a wide applica
@15–18#, and one can represent the influence of the irrelev
degrees of freedom on the relevant part of the system.
present 2D problem also differs from the diffusion in t
egg-carton potential@19# and the multiple hops of activate
surface diffusion@20#. Here the dependence of the diffusio
rate of a particle on the noise intensity will be nonmonoto
varying. Notice that the nonmonotonic phenomenon p
posed in this work could be very useful in understanding
nature of completely symmetric periodic structures, as w
as for applications such as noisy Josephson junction, mo
ity and diffusion of atoms in crystals, and supersonic co
ductivity.

II. MULTIDIMENSIONAL EFFECTS

For a 2D coupled periodic system, an exact expression
the overdamped diffusion is not available. However, it
possible to generalize the method leading to exact 1D res
and to obtain an analytical 2D approximation. In a rec
series of papers@21–23#, the variational transition stat
theory for multidimensional activated rate processes h
been developed intensively by Berezhovskii and co-work
which will be the starting point of the present work. Indee
the diffusion rate constant of a particle is connected to

mobility and the latter is determined bym(F)5F21^ẋ&
52pJ/F, in which F is an introduced constant force alon
the x axis andJ is the probability current. In the absence
external driving force, the diffusion rate of the particle
thus given by the free diffusion constant multiplied by t
mobility according to the linear response theory@1,8#, i.e.,
D* 5m(0)Q. Notice that the value ofm(0) is finite because
the current vanishes ifF50 for the symmetrical periodic
potential~2! with Eq. ~3!.

Now, we consider the case of a white noise, thusk(ut
2t8u)5d(t2t8). In the following, we treat two different ap
proximate approaches. The first approach is called
‘‘quasi-2D approximation.’’ The variabley is assumed to
play the role of a parameter, namely, the influence ofy on the
diffusion should be treated parametrically rather than os
lating. Assuming that at fixedy the diffusion of the particle
along thex direction has been considered as being one
mensional, we carry out ay-dependent diffusion rateD1* ,
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D1* ~y!5Q~2p!2H E
0

2p

exp@2U~x,y!/Q#dx

3E
0

2p

exp@U~x,y!/Q#dxJ 21

. ~5!

The mean diffusion rate of the particle equals the integrat
of y from 2` to ` for D1* (y) within one spatial period,

D* 5

E
2`

`

dyE
0

2p

dxD1* ~y!Pst~x,y!

E
2`

`

dyE
0

2p

dxPst~x,y!

, ~6!

where the equilibrium distributionPst(x,y) reads@18,24–
26#,

Pst~x,y!5exp@2U~x,y!/Q#. ~7!

Hence, the diffusion rate constant is finally predicted by

D* 5Q

E
2`

`

dyH E
0

2p

dx exp@U~x,y!/Q#J 21

E
2`

`

dyE
0

2p

dx exp@2U~x,y!/Q#

. ~8!

If the potential shape is chosen to be the form of Eqs.~2!
and ~3!, we can rewrite Eq.~8! as

D* 5Q

E
2`

`

dy exp~2 1
2 C0y2!I 0

21~z!

E
2`

`

dy exp~2 1
2 C0y2!I 0~z!

, ~9!

with

z5z~y!5H h21S 1

2
C0ly2D 2

1hC0ly2 cos~f!J 1/2

,

~10!

whereh5U10/Q and I 0 is the modified Bessel function o
zeroth order.

For the decoupling cases (l50), D* 5QI0
22(h), leading

to

]~D* Q21!

]Q
52hI1~h!I 0

23~h!>0, ~11!

whereI 1 is the modified Bessel function of the first order. S
that the 1D diffusion rate in units ofQ is an increasing func-
tion of the noise intensity and reaches asymptotically a c
stant limQ→` D* 5Q. Further, in the absence of energy ba
riers, the diffusion rate times the inverse of the no
intensity is reduced to
2-2
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D* Q215

E
2`

`

exp~2 1
2 C0y2!dyI0

21~ 1
2 C0ly2!

E
2`

`

exp~2 1
2 C0y2!dyI0~ 1

2 C0ly2!

, ~12!

which is aQ-independent constant.
The second approximation is the ‘‘effective potential a

proach’’ ~EPA!. In the EPA, the 2D problem is simplified t
the 1D problem with a reduced potentialV1(x) through
eliminating the variabley @18,19,21#. We integrate overy
from 2` to ` in the equilibrium distribution~7!, thus the
reduced potential is given by

V1~x!52Q lnH E
2`

`

dy exp@2U~x,y!/Q#J
5U1~x!1

1

2
Q lnFC~x!

2pQG . ~13!

The diffusion rate constant can be written as

D* 5Q~2p!2H E
0

2p

exp@2V1~x!/Q#dx

3E
0

2p

exp@V1~x!/Q#dxJ 21

5Q~2p!2H E
0

2p 1

AC~x!
exp@2U1~x!/Q#dx

3E
0

2p
AC~x!exp@U1~x!/Q#dxJ 21

. ~14!

According to Schwarz’s inequality, we have

S 1

2pE0

2p dx

AC~x!
D S 1

2pE0

2p
AC~x!dxD

<F 1

2pE0

2pC1/4~x!

C1/4~x!
dxG 2

51. ~15!

This means that the asymptotic value of the 2D diffusion r
constant is always not larger than that of the 1D one, si
limQ→` D* 5Q for the 1D case. Oppositely, whenQ is
much smaller than the barrier heightEb of the potential
U1(x), the saddle point method approximates the form
~14! as

D* 5QAC~x0!

C~xb!
exp~2Eb /Q!, ~16!

herex0 and xb denote the coordinates of the minimum a
maximum of the potentialU1(x). It is noticed that the 2D
diffusion rate should be larger than the 1D diffusion rate
C(xb),C(x0). Namely, the presence of anx-y coupling can
make the diffusion of the particle more rapid at low noi
intensities.
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It is straightforward to simulate numerically a set
Langevin equations in terms of the predictor-corrector al
rithm @25,26#. If initially the particles are atx(0)5p/2 and
y(0)50 they will diffuse to adjacent wells. In the following
calculations, the fixed parameters areU1051 or 0, C051,
andf5p except in Figs. 2 and 3, as well as the time step
integrating Langevin equations,Dt51022, the diffusion
time takest5200, and number of the test particles isN
52000.

Let us compare the approximations with the accurate
merical result. In Fig. 1, the quasi-2D approximation cor
sponds to the solid line, the EPA to the dash-dotted line
the points are the numerical data. It is seen that the EP
simple and shows right behavior of the diffusion rate co
stant for weak coupling. The quasi-2D approximation sho
predict better result for strong coupling, this is due to t
minima and the saddle points of the potential~2! with Eq. ~3!
lying on a straight line, i.e.,y50.

The value of ln(Q/D* ) as a function ofQ21 is plotted in
Figs. 2~a! and 2~b! by means of the quasi-2D approximatio
and the EPA, and compared with the Langevin simulation
fixed coupling parameterl50.8. A linear behavior is ex-
pected in the case of smallQ. It is seen that, if the Arrhenius
limit is reached, the plot should be linear with a slope th
represents the barrier height. For the sin(x) potential the bar-
rier height is equal to 2, both Figs. 2~a! and 2~b! show a
slope of 2. Also, it is observed that the above two kinds
theoretical predictions are good in agreement with the
merical result for the week noise case. In addition, in
Arrhenius limit, the formula~16! has described correct be
havior of the reduced diffusion rate constant for differe
values off.

In the presence of energy barriers, the full 2D diffusi
rateD* Q21 as a function ofQ for different f is shown in
Fig. 3. As a consequence, a new nonmonotonic behavio
observed. At intermediate noise intensities, the value

FIG. 1. Dependence ofD* Q21 on the couplingl at fixed Q
52.0, tc50, andf5p. The black dots correspond to the Langev
simulation, the dash-dotted line to the EPA and the solid line to
quasi-2D approximation.
2-3
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D* Q21 is larger than that of the limits ofQ→0 and Q
→`. Thus the reduced diffusion rate constant has a loc
maximum for a value of the noise intensity of the order o
the barrier height of the energetic potential. This phenom
enon opens interesting perspectives, e.g., to manipul
reaction-diffusion system.

Moreover, the condition of the nonmonotonic behavior o
D* Q21 can be observed in Fig. 3. We derive the following
expressions from Eq.~12!,

]~D* Q21!

]Q
5

1

Z2E2`

` E
2`

`

dydȳ

3expF2
C0

2
~y21 ȳ2!G•H 2

I 1~u!

I 0
2~u!

I 0~v !
]u

]Q

2
I 1~v !

I 0~u!

]v
]QJ , ~17!

FIG. 2. Arrhenius plot of the reduced diffusion rate at fixed
l50.8 andtc50. The dots correspond to the numerical results; th
lines to the quasi-2D approximation@Eq. ~9!# in ~a! and the EPA in
~b! @Eq. ~14!#. The solid line and circles correspond to the 1D; th
dashed line and triangles to the 2D withf5p/4; and the dotted-
dashed line and squares to the 2D withf5p.
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where

Z5E
2`

`

dy expF2
1

2
C0y2G I 0~u!, ~18!

u5z(y), v5z( ȳ), and

]u

]Q
52

1

Qu
@h21hC0ly2 cos~f!#,

]v
]Q

52
1

Qv
@h21hC0l ȳ2 cos~f!#. ~19!

The values of]u/]Q and ]v/]Q could become zero and
thus ](D* Q21)/]Q50 at a finite noise strengthQm , if
cos(f),0, i.e., 1

2 p,f, 3
2 p.

III. THE ROLE OF COLOR OF NOISE

Now we investigate the diffusion induced by an Ornste
Uhlenkeck noise ~OUN!, i.e., k(ut2t8u)5tc

21 exp@2ut
2t8u/tc#, wheretc is the correlation time of the colored nois
In the case of weak colored noise, namely, the correla
time tc is much smaller than the diffusion time, the curre
satisfies the Fokker-Planck equation@14#,

Ji5
]U

]qi
P2

]

]qi
@Q i P# ~qi5x,y!,

Q i5DF11tcm1
i M ii 2

tc
2

2
m2

i ~R2M2! i i 1O~tc!
3G ,

~20!

where the matrix elementsMi j 52]2U(x,y)/]qi]qj , Ri j

5(k(]U/]qk)(]
3U/]qi]qj]qk), andm1

i andm2
i are the first

and second moments, respectively, of the correlation fu
tion k. The role of color of the noise is thus to make th

e

FIG. 3. The 2D reduced diffusion rate calculated by Eq.~9! as a
function of Q at fixed l50.8, tc50.0, as well as for differentf
5p, 6

3
4 p, 6

1
2 p, 6

1
4 p, and 0 from top to bottom.
2-4
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MULTIDIMENSIONAL AND MEMORY EFFECTS ON . . . PHYSICAL REVIEW E63 061112
effective noise intensity position dependent. However,
any small correlation time there is a value ofy such thatQ i
is negative. So the above treatment@Eq. ~20!# should not
apply to the present coupled periodic potential~2!.

In order to predicate the diffusion rate constant of t
particle induced by the OUN, we integrate overy from
2` to ` for the equilibrium distribution@Eq. ~7!# if color of
the noise is not considered, and then the colored eff
@27,28# of the noise are introduced through an effective p
tential. Simpler to the 1D case, we solve the mobilitym(0)
of the stationary solution for the 1D effective Fokker-Plan
equation with a smalltc @1,29–31#. The diffusion rate con-
stant is written as

D* 5Q~2p!2H E
0

2p

g21~x,tc!exp@2Fe f f~x!/Q#dx

3E
0

2p

exp@Fe f f~x!/Q#dxJ 21

, ~21!

where the effective potentialFe f f is given by

Fe f f~x!5Ex

V18~ x̄!g21~ x̄,tc!dx̄5V1~x!1
1

2
tc@V18~x!#2

5U1~x!1
1

2
Q lnFC~x!

2pQG
1

1

2
tcH U18~x!1

1

2
Q

C8~x!

C~x! J 2

, ~22!

and

g~x,tc!5
1

11tcV19~x!
. ~23!

Here,Fe f f(x) depends on the noise intensityQ. It is found
from Eq. ~22! that the barrier height ofFe f f(x) increases
with increasing noise intensity in the absence of energ
potential (U150), thus this potential can be called an e
tropy channel. It is true thatD* (tcÞ0),D* (tc50) ac-
cording to Eqs.~21! and ~22!.

In the absence of energy barriers, the reduced diffus
rate constant is expressed by

D* Q215~2p!2H E
0

2p H 11
1

2
tcQ@C8~x!/C~x!#8J C~x!21/2

3expH 2
tc

8
Q@C8~x!/C~x!#2J dx

3E
0

2p

C~x!1/2expH tc

8
Q@C8~x!/C~x!#2J dxJ 21

.

~24!

Note that the value ofD* Q21 decreases and then vanish
when Q→`, because the height of the entropy barrier
proportional to the noise intensityQ, and the occurrence o
the maximum of this quantity appears in the limit of zeroQ,
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limQ→`(D* Q21),(D* Q21)uQ50. Further, it is easy to
prove that](D* Q21)/]Q,0.

We stress that, for our model, the stronger the colo
noise, the higher is the entropy barrier. In the absence
energy barriers, the diffusion rate constant as a function
the noise intensity for differenttc is plotted in Fig. 4. Of
particular interest is the dependence of the reduced diffus
rate on the intensity of the colored noise, namely, the va
of D* Q21 decreases with the increase of eitherQ or tc .
This implies that the parametersQ and tc have the same
influences onD* Q21. However, the reduced diffusion rat
of the particle is a constant and depends only on geome
structure of the periodic channel for the 2D white noise c
@9#. Here, the existence of a vanishing asymptotic value
D* Q21 indicates the occurrence of a phenomenon of
inhibition diffusion.

The noise-intensity dependence of the full 2D reduc
diffusion coefficient shown in Fig. 5 is nonmonotonic. B
cause all motion freezes asQ→0, while asQ→` the en-
tropy channel exerts much influence on the diffusion of
particle, in particular, in the latter case a large energy
transferred to they degree of freedom from the diffusio
direction@20#. For the fixed coupling parameterl and phase
difference f, the peak position changes slightly with th
noise correlation timetc , and the value of the maximum
D* Q21 decreases monotonically with the increase oftc .

Finally, the effective potentialFe f f(x) is plotted in Fig. 6.
The nonmonotonic property of the reduced diffusion rate
the 2D coupled periodic channel can be understood w
through the notion of aQ-dependence barrierEb,e f f for the
1D effective potential~22!. Here, a minimum ofEb,e f f cor-
responding to a maximal value ofD* Q21 is always a direct
signature for the nonmonotonic behavior of the reduced
fusion coefficient with the noise intensity.

FIG. 4. Dependence ofD* Q21 on Q in the absence of energ
barriers (U1050) at fixed l50.9, f5p and for three values of
tc50, 0.2, and 0.5 from top to bottom. The dots are the Lange
simulations and the solid lines to the EPA@Eq. ~21!#.
2-5
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IV. CONCLUSIONS

The motivation of the present work was twofold. First, w
apply two kinds of approximate schemes to predicate
two-dimensional diffusion rate of a particle driven by a wh
or colored noise, which is qualitatively in agreement with t
numerical result. Second, the dependence of the reduced
fusion rate constant on the parameters of the model is
cussed, thus we can perform from energy-controlled to
ternal parameters-controlled diffusion.

Activated diffusion is restricted to low noise intensities
high energy potential barriers, however, unactivated dif
sion can occur in a periodic entropy potential. The lat
phenomenon is due to the fact that the energy is transfe
to the irrelevant degree of freedom from the diffusion path
the system. Different from the previous studies, here in

FIG. 5. The 2D reduced diffusion rate as a function ofQ at fixed
l50.9, f5p and for differenttc50, 0.2, and 0.5 from top to
bottom. The dots correspond to the Langevin simulations and
solid lines to the EPA@Eq. ~21!#.
,

.
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absence of energy barriers, the 2D reduced diffusion
constant is a decreasing function of the intensityQ of the
colored noise and vanishes asymptotically in the limit ofQ
→`. Moreover, the increase of either the correlation time
the colored noise or the coupling strength between the
degrees of freedom makes this effect observable.

In the presence of energy barriers, the 2D reduced di
sion rate constant as a function of the noise intensity show
nonmonotonic behavior.This can be well understood from
idea of the effective potential. The barrier heightEb,e f f of
this potential is a nonmonotonic function of the noise inte
sity, and a minimal value ofEb,e f f may exist at a finite noise
intensity, which corresponds to a maximum of the reduc
diffusion rate constant.

ACKNOWLEDGMENTS

This work was supported by the National Natural Scien
Foundation of China under Grant No. 10075007.

e

FIG. 6. Plot of the effective potentialFe f f(x) @Eq. ~22!# for
different noise intensities. The parameters used aretc50.5 andl
50.8.
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